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1. INTRODUCTION

The kernel function method as presented by Bergman and Schiffer has had
an important impact on approximation theory and the numerical treatment
of elliptic differential equations [1-4]. With this as motivation, we have
developed a kernel function theory for elliptic systems of differential equa
tions. Here we treat the case of the self-adjoint system:

LI U = C(x, y)U (1.1)

where U and C are complex valued n x n matrices and LI is the Laplace
operator in two dimensions:

However, many of our results can be extended to more general self-adjoint
systems, and also to higher-order and higher-dimensional cases.

Equation (1.1) will be considered on a bounded regular region D in the
Euclidean plane and for simplicity D, the boundary of D, will be assumed to
be analytic. In i5 the matrix C will be assumed to be positive definite and
Hermitian: C = C*, where C* is the conjugate-transpose of C; also, C will
be assumed to belong to ~'(i5).

* This research was supported in part by the Air Force Office of Scientific Research
through AF-AFOSR Grants No. 71-2205A and No. 74-2592.
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It is interesting that many of the results of the scalar case can be shown to
have analogues in the matrix case. To make these similarities more obvious
we have been careful to choose notations that make the results appear to be
formally identical, whenever possible. Because of the noncommutivity of
the matrices involved, we stress that the order in which terms appear in our
formulas is essential.

2. FUNDAMENTAL MATRICES AND GREEN-DIRICHLET IDENTITIES

By Q =Q(15), we denote the set of all n X n (n ~ I) matrices, whose
entries are complex valued functions of class rc2(D). For any V, W in Q
define

E{ V, W}:==.o It [Vx *Wx + Vy *Wy + v*CW] dx dy. (2.1)

It follows that E*{V, W} = E{W, V}, and that E* is sesquilinear. The qua
dratic mapping E{V, V}, abbreviated E{V}, is a positive semidefinite
Hermitian matrix. We observe that E{V, WA} = E{V, W}A for every
constant (n X n) matrix A. Hence we have an inner product structure as in
Hilbert modules [5, 6]. The matrix norm used for Hilbert modules, however,
seems not to be as convenient for our purposes as the following

Ii Vii == sup I ;*V; I
lel=!

where; E en. One may show that the Schwarz inequality

(2.2)

II E{ V, W}II :s;: [I E{ V}W/2 11 E{ W}II1/2, (2.3)

and the triangle inequality,

II E{V + W}W/2 :s;: II E{V}W/2 + II E{W}111/2, (2.4)

are valid. Moreover, II E{V}I[1/2 defines a norm on Q.
For each V, Win Q we have the first and second Green's identities for the

formally self-adjoint operator L == Ll - C, i.e.,

and

E{V, W} = - t V*(8WJ8v) ds - It V*L[W] dx dy

= - Ii> (8V*j8v) Wds - ft (L[V])* Wdxdy

(2.5)

If [V*L[W] - (L[VJ)* W] dx dy = I [(8V*j8v) W - V*(8Wjov)] ds.
D i> (2.6)
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Differentiation in the normal direction is with respect to the inner normal
(unit) vector v.

By a fundamental matrix of L with pole Q, we mean a matrix S = S(P, Q)
of the form

S(P, Q) = [Ij(27T)] log(ljr) + s(P, Q)

which is a solution for the equation

Lp[S](P, Q) = -o(P - Q)I.

(2.7)

Here I is the (n X n) identity matrix and 0 is the Dirac delta. The matrix S
is of class ~2C15 x 15) except for P = Q where it is ~'. The existence of S is
assured by integral equations methods.

From (2.5) we obtain for V in Q the representation formula

V(Q) = f.o (8S*/8v p)(P, Q) yep) ds p + E{S(P, Q), Yep)}· (2.8)

We denote by }; that subset of Q consisting of the classical solutions of
(1.1). For any U in }; the identity (2.6) yields

U(Q) = f.o [(8S*/8v p )(P, Q) U(P) - S*(P, Q)(8U(P)/8vp)] ds p • (2.9)

In what follows, we will assume that the fundamental matrix S(P, Q) will
remain fixed and introduce the Green matrix G(P, Q), Neumann matrix
N(P, Q), and Robin matrix R(P, Q) for L with respect to the region D. Each
of these matrices is a particular fundamental matrix satisfying conditions on
D. For P on D and Q in D and given continuous matrix A on D

G(P, Q) = 0, (8NI oVp)(P, Q) = 0 and (oj OV p) R(P, Q) = A *(P) R(P, Q).

Here A is also assumed to be positive-definite on D. Like S, each of these
fundamental matrices belongs to ~2(15 X 15) except for P = Q. The usual
representation formulae for the first, second, and third boundary value
problems are given, respectively, by

U(Q) = t (8G*/8v p)(P, Q) U(P) ds p ,

U(Q) = - t N*(P, Q)(8U/8v p)(P) ds p ,

(2.10)

(2.11)

and

U(Q) = - t R*(P, Q)[(8U/8vp)(P) - A(P) U(P)] ds p . (2.12)
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Remark. The uniqueness of the Dirichlet, Neumann, and Robin problems
follows, as usual, from Green's Identity (2.5).

The compensating parts of G, N, and R are the matrices defined by

g(P, Q) == G(P, Q) - S(P, Q)

n(P, Q) =0 N(P, Q) - S(P, Q)

and rep, Q) === R(P, Q) - S(P, Q).

Each of these matrices belongs to 'C2(15 X 15) except for both P and Q on f)

and P = Q. The symmetry properties G*(P, Q) = G(Q, P) and N*(P, Q) =
N(Q, P) are a consequence, as in the scalar case, of (2.6).

From (2.8), we have the following reproducing formulas for the spaces Q,
and QO, i.e.,

and
V(Q) = E{N(P, Q), V(P)},

V(Q) = E{G(P, Q), V(P)},

VEQ, (2.13)

(2.14)

where QO is that subset of Q whose matrix functions vanish on D. On the other
hand,

E{G(P, Q), U(P)} = 0, (2.15)

may be obtained from (2.5).
Henceforth, we will assume that the fixed fundamental matrix has the

symmetry property

S*(P, Q) = SeQ, P). (2.16)

Since G and N have this property, there is no loss of generality in making
such an assumption. It follows that g and n must also have this symmetry
property.

3. THE MATRIX KERNEL AND THE DIRICHLET IDENTITIES

The matrix kernel K is defined by

K(P, Q) ~ N(P, Q) - G(P, Q),

from which the reproducing property

(3.1)

U(Q) = E{K(P, Q), U(P)}, UEE, (3.2)

follows directly via (2.13) and (2.15). As in the scalar case, K belongs to
'C2(15 x 15) except for P and Q both on D and P = Q.
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The symmetry property of K, K*(P, Q) = K(Q, P), is an immediate
consequence of its definition.

If a matrix K(P, Q) having the reproducing property (3.2) is known, then G
may be obtained from

G(R, Q) = S(R, Q) - E{K(P, R), S(P, Q)},

which then also yields N by (3.1).
The matrix kernel also permits estimates for elements of I; directly from

(3.2), i.e.,

II U(Q)11 2 ~ II E{K(P, Q)}IIII E{U}II

= II K(Q, Q)IIII E{U}II· (3.3)

This inequality is sharp, since equality occurs for U(P) = K(P, Q). This
observation yields the following characterization of K as an extremal function
for the minimum problem

min(1I E{U}II/II U(Q)11 2
) = 1/11 K(Q, Q)II, (3.4)

where U is subject to the restriction that it satisfy our partial differential
equation.

The inequality (3.3) applied to U(P) = K(P, T) yields the interesting
estimate

II K(Q, T)11 2 ~ II K(T, T)IIII K(Q, Q)II. (3.5)

Following Bergman and Schiffer [1, p. 298] it will be convenient to intro
duce the geometric quantity

I(P, Q) == In (oS*jovr)(T, P) SeT, Q) dsr ,

which has the symmetry property since

(3.6)

I*(P, Q) - I(Q, P) = f [S*(T, Q) oS(T, P) - oS*(T, Q) SeT, P)] dS r
D oVr oVr (3.7)

= S*(P, Q) - SeQ, P) = 0

as follows from Green's second identity (2.6).
There are matrix analogues of the Dirichlet identities also, which we list

below,

E{ geT, P), geT, Q)} = -g(P, Q) - I(P, Q) (3.8)

E{ geT, P), neT, Q)} = -I(P, Q) = E{n(T, P), geT, Q)} (3.9)
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E{n(T, P), neT, Q)} = n(P, Q) - J(P, Q) (3.10)

so that
E{/(T, P), I(T, Q)} = K(P, Q) - 4J(P, Q) (3.11)

where the I kernel is defined by

I(P, Q) == n(P, Q) + g(P, Q). (3.12)

By an adaptation of the proof for the scalar case in [I] one can show that I
belongs to rt"(15 X 15); moreover, the mixed second derivatives IXI; , etc., are
continuous for P distinct from Q and (log rpo)-l IXI; , etc., remain bounded
for P tending to Q.

4. AN INTEGRAL EQUATION FOR THE MATRIX KERNEL

We now characterize the matrix kernel K as the solution of an integral
equation and thereby obtain useful series developments for K.

Since, for fixed Q, K(P, Q) - 4/(P, Q) is an element of E, the reproducing
property (3.2) together with (2.5) implies

K(Q, P) - 4J(Q, P) = - In f*(Q, T) K(T, P) dsr .

Here f is defined by

f(Q, T) == (8jovr)[K(T, Q) - 4/(T, Q)]

and is seen to be continuous on 1J X 1J due to the rt" behavior of I and (3.11).
We are led therefore to consider the homogeneous equation

<P(Q) = -,\ Iv f*(Q, T) <P(T) dSr

and investigate its eigenvalues.
The following lemmas are easily proven:

(4.1)

LEMMA. The eigenvalues of (4.1) are precisely those of the eigenvalue
problem

where

U(Q) = '\E{M(P, Q), U(P)}

M(P, Q) = K(P, Q) - 4I(P, Q).

(4.2)
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LEMMA. The eigenvalues of (4.2) are precisely the squares of those of the
eigenvalue problem

V(Q) = jLE{I(P, Q), Yep)}.

The proofs depend on the easily proven identity for elements of Q:

(4.3)

E{E{X(T, P), YeT)}, Z(P)} = E{Y(T), E{X*(T, P), Z(P)}}. (4.4)

In the next section we will prove:

LEMMA. The eigenvalues of (4.3) are real.

If we assume, as in the scalar case [1], that S(P, Q) = G1(P, Q) or N1(P, Q)
for domain D1 containing D, then it is easy to show that the mapping T
on E defined by

is norm-decreasing:

T[U](P) == E{I(R, P), U(R)}

II E{T[U]}II :( II E{U}II

(4.5)

with equality only for U == O. Hence, under our additional assumption
about S, we have immediately:

LEMMA. The eigenvalues of (4.3) satisfy

jL < -1 or jL>1.

As a result of these lemmas we see that ,\ in (4.1) satisfies ,\2 > 1 and the
usual iterative scheme for solving the corresponding inhomogeneous equation

c1J(P) = F(P) - ,\ t f*(P, T) c1J(T) dSr

leads for sufficiently small I ,\ I to the series representation

(jJ(P) = F(P) + f (_,\)v J. fv*(P, T)F(T)dsr
v~l D

as well as the representation

(jJ(P) = F(P) + Iv f-1(P, T, ,\) F(T) dSr

in terms of the resolvent kernel
00

f-1(P, T, ,\) == L (_,\)v f v*(P, T).
v=l

(4.6)
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The vth iterated kernel $;, is defined by

for v ~ 2 with
~(T, Q) - f(T, Q).

As in the scalar case this allows one to obtain a series representation for K
in terms of

MN(P, Q) == E{M(T, P), MN_I(T, Q)}
where

M(T, P) == MI(T, P) == K(T, P) - 4/(T, P).

Indeed, since

(_I)n-l(oMN(P, Q)/ovp ) = KN(Q, P)

putting <P(Q) = K(Q, P) and F(Q) = 4/(Q, P) in the representation (4.6)
yields

K(Q, P) = 4/(Q, P) + In f-I(Q, T) 4/(T, P) dS T

ro

= L E{Mv(T, Q), 4/(T, P)} (4.7)
v=o

where Mo(T, Q) = K(T, Q). The expression (4.7) has the defect that K is
contained on the right side. To remedy this, introduce the purely geometric
quantities

il(P, Q) == 4/(P, Q)

iv(P, Q) == E{iv*-.iP, T), 4/(T, Q)}, v ~ 2

= E{4/(T, P), iv-leT, Q)}

which satisfy

MN(P, Q) = f (-I)v C) ilP, Q).
v=o

In terms of the iv one obtains the important representation

K(P, Q) = I f (-I)V (~) iv+1(P, Q)
p~o v~o

which involves only integrals of the fundamental matrix S.

(4.8)
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5. THE EIGENVALUE PROBLEM
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In this section we examine more closely the eigenvalue problem (4.3) and
obtain Fourier expansions in terms of the corresponding matrices. The
principal result is the elegant representation (5.9) for the kernel matrix.

To study (4.3) we introduce on L: the following inner product

[U, V] == trace E{V, U}. (5.l)

Let :E be the completion of L: with respect to [ , ]. The operator T involved
in (4.3) and defined for elements U of L: by (4.5) is linear, bounded, and
symmetric, and it has a continuous extension to a compact self-adjoint
operator t on :E. Hence, t has a countable set of real eigenvalues Av

(J Al I :( I A2 I :( ...) with corresponding orthonormal eigenmatrices Vv :

(5.2)

To these Vv we adjoin a countable orthonormal basis of elements of L: for
the null space of t (the eigenmatrices corresponding to Av = (0) to obtain a
complete orthonormal system {V.} for :E. For any U in :E, one has the Fourier
expansion

00

U = L cxYv,
1'=1

(5.3)

convergent in the sense of :E. In particular,

K(P, Q) = L cx.(Q) V.(P).
v~l

(5.4)

The series (5.3) and (5.4) also converge in the sense of II E{ }W/2 since this
norm and [ , ]1/2 are equivalent. However, to obtain expansions more
attuned to the sesquilinear mapping E* we renormalize in a different way.
First, using (4.4), it is easy to see that the Vv belonging to distinct eigenvalues
(including A. = (0) are orthogonal in the sense that

E{Vv, V..} = o. (5.5)

The renormalization then proceeds via the following lemmas. As before,
all matrices are (n x n) and I denotes the identity matrix.

LEMMA 5.1. If V is an eigenmatrix ofT such that V is nonsingular at some
point of D, then there exists a constant positive-definite Hermitian matrix R
such that
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Proof Merely choose R to be the unique positive-definite Hermitian
square root of E{V}.

Remark. Note that VR-l is an eigenmatrix of T belonging to the same
eigenvalue as V. The same is true of VR1 in the following lemma.

LEMMA 5.2. If V is any eigenmatrix of T, then there exists a nonsingular
constant matrix R1 such that

where 1is a nonzero diagonal idempotent matrix.

Proof Since E{ V} is Hermitian and positive semidefinite, there exists a
constant unitary A such that

where k j ~ 0 with at least one k j =1= 0 and the idempotent matrices I j have
zero entries except for the entry I injth diagonal position. Now let

k. = k-:1 / 2, if k j > 0
1 1

= 1, if k j = 0

where the positive square root is chosen. Then R1 = A* L;=l k;Ij satisfies
all the requirements and the proof is complete.

Remark. The construction in this lemma is like that in [5, Lemma 2.1].
Now a Gram-Schmidt process will be carried out.

LEMMA 5.3. For any eigenvalue 1\ =1= IX) the corresponding eigenspace Iffv

is spanned by the matrix linear combinations

m

L W;(P) A j

j~l

where the Wj are eigenmatrices ofT belonging to Av ,

(5.6)

and
i=l=j (5.7)

(5.8)

where I j is a nonzero diagonal idempotent matrix.
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Proof Construct (n X n) matrices WI"'" Wm (m = m(v) ;;:, 1) from the
linearly independent columns of all the V.. in C., using each column once and
only once but filling in zero columns in Wm , if necessary. It is easy to see
that:

(i) Each Wj is an eigenmatrix of T belonging to the eigenvalue A••

(ii) Except possibly Wm each Wj is nonsingular.

(iii) The matrix linear combinations L:I Wj(P) A j span Cv •

By the previous lemmas we may assume, without loss of generality, that
E{Wm } = 1m and E{Wj } = I for j < m. Putting WI = WI and proceeding
recursively

j

WHI = Wi+l - L W!E{ W! , Wj+l}
l~I

we obtain the desired orthogonality property (5.7). Using Lemma 5.2, it
may be assumed that the normalization condition (5.8) is satisfied by the W j •

Finally, from the definition of Wj in terms of Wi the spanning property
(5.6) is assured, completing the proof.

Remark. The eigenspace for Av = OCJ is also covered in the last lemma.
If the null space of T is finite dimensional then the Lemma stands without
alteration; otherwise, let m = 00 in (5.6) and carry out the same construction
on the W j •

As a result of these considerations we are assured that there exists a set
{Uv} of eigenmatrices of T (including Av = OCJ) with the orthonormal pro
perties

E{Uv , UJ = 0,
and

where Iv is a nonzero diagonal idempotent matrix. The {Vv} are complete in
~: Every U E ~ has a representation with constant matrix coefficients

convergent with respect to II E{ }III/2. In particular, from (5.4),

00

K(P, Q) = L VlP) A.(Q)
v=l
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with IvAlQ) = Vv*(Q) so that VlP) AiQ) = Av*(Q) IvAv(Q)
Av*(P) IJ.Av(Q) = VlP) V. *(Q) and thus

OC>

K(P, Q) = L Vv(P) V. *(Q).
v=1

(5.9)

Observing that ViP) Vv*(Q) = ViP) I.V. *(Q), we find in a similar way

and so by iteration

OC>

{(P, Q) = L (V.(P) V/(Q)/>"v)
v=1

OC>

M(P, Q) = L (V.(P) V.*(Q)/>".2).
v=l

(5.10)

(5.11 )

In view of the estimate (3.3), the series (5.9)-(5.11) converges uniformly in
compact subsets ofD. Moreover, series (5.11) converges uniformly on 15 x 15.
For P = Q this follows from the continuity on M(Q, Q) on 15 and the positive
definiteness of Vv(Q) V.*(Q) >,,;2 via Dini's theorem on uniform convergence.
For general P, Q the result follows from the Cauchy inequality for infinite
sums.

It is now a simple matter to follow the scalar case [1] to obtain the useful
estimates

II K(P, Q) - KN(P, Q)II ~ (1/>,,~N)11 M(P, P)IIl/21! M(Q, Q)ll1 /2 (5.12)

and

II K(P, Q) - KN(P, Q)II ~ {4/[>"~N(V - l)m I(P, P)W/2 11 I(Q, Q)W/2

where K N is the nth partial sum for Kin (4.8):

N p

KN(P, Q) ~ L L (-l)v (~) iV+l(P, Q).
0=0 v=O

(5.13)

These estimates permit effective estimates for the error in the approximation
of solutions of boundary value problems for (1.1) and related nonlinear
problems.

The authors pursue this idea in a paper [7] concerning the semilinear
matrix equation

L:I V = f(x, y, V, V X ' V y). (5.14)
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